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By comparing the convection and diffusion transport times of a binary liquid mixture contained in a
rectangular box subjected to a small horizontal temperature gradient we roughly estimate the size of an
accidental temperature gradient that can be allowed without keeping an experiment away from effective
equilibrium. This approximate criterion is then tested against an experiment that is independently
known to have equilibrated [G. Maisano, P. Migliardo, and F. Wanderligh, J. Phys. A 9, 2149 (1976)],
and we find that the experiment was close to our predicted borderline.
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I. INTRODUCTION

The observation of thermal equilibrium phenomena in
binary liquid mixtures continues to hold great interest.
Some investigations, such as the measurement of the bulk
coexistence curve (see the review article of Kumar,
Krishnamurthy, and Gopal [1]), can tolerate qualitatively
significant departures from thermal equilibrium. In par-
ticular, one does not require formation of gravity-induced
gradients in the species concentration. Other work may
require a much closer approach to true thermodynamic
equilibrium. For example, in the case of gravity-thinned
wetting for a liquid at bulk coexistence, these concentra-
tion gradients must equilibrate [2]. Thus studies of
binary liquid systems are often complicated by the
difficulty in establishing that a sufficient degree of equilib-
rium has been achieved. Here we discuss the effect of
convection due to the small horizontal temperature gra-
dients that will inevitably occur in the environment of a
real sample cell, and the possibility that this will drive the
system out of effective equilibrium. Although such con-
vection effects are lurking in many experiments, an esti-
mate of their importance has been lacking. We will sug-
gest a criterion based on a solution of the Navier-Stokes
equations for the acceptable size of horizontal tempera-
ture gradients. This test will then be examined by apply-
ing it to experiments that we know came to equilibrium.

If the liquid did not convect the distribution of species
would be governed by diffusion. This is described by the
diffusion flux density vector for a particular component
of the mixture [3]:

i=pD[VC + (ks /T)VT +(k, /p)Vp] . (1)

Here p is the density, D is the mutual diffusion constant,
kyp is the thermal diffusion ratio, T is the temperature, k,
is the barodiffusion ratio, p is the pressure, and C is the
concentration by mass fraction of one species (in this pa-
per the denser one). When a steady state is attained in a

closed system, the flux will be zero and temperature or
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pressure gradients will produce a concentration gradient.
For temperature gradients this is called the Soret effect.
For binary liquids in the vicinity of their phase separation
critical point k7 and k, both diverge [4,5], which means
that these effects can be important. Barodiffusion is an
integral part of the equilibration of a binary liquid sys-
tem, forming the vertical density gradients mentioned in
the first paragraph. Since it takes place by diffusion over
macroscopic distances, the time scale for equilibration
can be long (weeks or months) [6]. Thus a convective
flow that can overturn the liquid in times short compared
to this is important, even though the flow speed may be
only tens of nanometers per second.

The real flow will be determined by the density varia-
tions produced by thermal expansion, mechanical
compression, and the concentration gradients due to
barodiffusion and the Soret effect. If the liquid in ques-
tion has a free interface, then temperature-induced gra-
dients in the surface tension can also produce convection;
this effect is called Marangoni convection. Because we
are interested in a case where the liquid has no free sur-
face, we do not need to include Marangoni convection.
In the samples that we are considering here, the Soret
effect will segregate the denser species into the warmer
regions of the fluid, and sufficiently near the critical phase
transition, the equilibrium value of this concentration
gradient would produce a horizontal density gradient
larger than (and with the opposite sign to) the horizontal
density gradient due to thermal expansion. This would
be expected to have a very considerable influence on the
flow. However, because the cells we are interested in
here are wider than they are tall, the time needed for the
barodiffusion to equilibrate will be much shorter than the
time for the Soret gradient, so that the experiment will be
ended before this becomes significant and we neglect it
here. In a more general work these effects would both be
considered. ’

In order to obtain a convenient analytic result we fur-
ther simplify the problem by considering the concentra-
tion gradient to be determined by barodiffusion and any
intended external mixing done by the experimenter alone.
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We will neglect the effect of the convective flow on the
species distribution. This means that our results are not
self-consistent. We feel that this is a justifiable approxi-
mation for extremely slow flows, but it would not hold
for flows that are significant compared to diffusion. We
will also make the Boussinesq approximation, that is, we
will assume that temperature changes are small enough
that, except for density, we can regard fluid properties as
temperature independent, as discussed in Ref. [7].

The temperature gradient of interest will presumably
vary with time. If we consider the Fourier transform of
this signal giving the amplitude of the temperature gra-
dient as a function of frequency, we can separate it into
three frequency regimes: The low-frequency limit has
periods that are long compared to the time of the experi-
ment; these will be labeled dc temperature gradients. The
high-frequency limit has periods that are short compared
to the time needed for heat to pass through the sample by
conduction and advection. The temperature fluctuations
that are long enough lived to establish themselves
throughout the cell but those that do not last as long as
the experiment will be placed in the intermediate-
frequency regime.

We expect that the high-frequency temperature fluc-
tuations will have little effect on the distribution of mass
in the sample. Since heat can conduct through a typical
sample on a time scale of minutes, we can neglect fluctua-
tions with frequencies higher than 10 mHz or so, even if
the amplitude at these frequencies is larger than that of
the low-frequency fluctuations. For simplicity we will at
first consider only the very-low-frequency fluctuations
which can be treated as constant over the period of the
experiment. Intermediate-frequency fluctuations, such as
those that might have periods of a day, will be neglected.
Because, even though they last long enough to pervade
the fluid and establish a flow, they would not transport
material as far or as consistently as a constant flow. Nev-
ertheless, this regime might still be interesting and
significant.

Small horizontal temperature gradients are more in-
teresting or troublesome than the more heavily studied
vertical temperature gradients. A vertical temperature
gradient must exceed a certain magnitude in order to
drive convective flow, although in a two-component
liquid this threshold can be much smaller than it is in the
more familiar one-component case, if the Soret effect or
the initial conditions put the denser species at the top
[8,9]. This means that a good experiment can be con-
ducted in which no convection due to vertical tempera-
ture gradients takes place. However, a horizontal tem-
perature gradient will always produce convection (in an
incompressible liquid) regardless of the size or the sign of
the gradient [10]. Thus a clever experimentalist will still
have to contend with this flow.

Since convection will be taking place inside the sample,
it is important to determine if the system has approached
equilibrium in spite of convection or has merely reached
a steady state. To make this determination one must
have both a knowledge of the velocity field inside the
fluid and an appreciation of the significance of that veloc-
ity for the particular system of interest.
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II. THE EXISTENCE OF WELL ENOUGH
EQUILIBRATED EXPERIMENTS

In the presence of horizontal temperature gradients the
system will be out of thermal equilibrium on both the mi-
croscopic scale of heat flow and entropy generation by
molecular collisions and on the macroscopic scale of
coherent flow throughout the system. For small tempera-
ture gradients it is only the macroscopic departure from
equilibrium that concerns us here. However, this depar-
ture will not be qualitatively significant in a particular ex-
periment if the temperature gradient has been brought to
such a low value that further reducing the gradient would
not noticeably change the results.

One example is the observation of gravitational con-
centration gradients due to barodiffusion in aniline plus
cyclohexane by Maisano, Migliardo, and Wanderligh [6].
They observed gradients similar to the expected equilibri-
um gradients in an environment where the temperature
gradients were less than 0.5 mK/cm. These temperature
gradients could not have produced vigorous convection
because if they had, the vertical concentration gradient
would not have formed. A small fluid element that at the
beginning of the experiment was near the bottom of the
sample and thus grew to be poor in cyclohexane, would
instead have traveled repeatedly from bottom to top and
back, and thus would have spent as much time enriching
itself in cyclohexane as it did losing it. We will use this
successful experiment to evaluate our standards for con-
vective disruption of thermal equilibrium.

III. FLUID DYNAMICS AND TIME SCALES

The velocity field can be directly measured in principle,
but this is impractical with conventional techniques such
as seeding the flow with neutrally buoyant particles for
the small velocities under consideration. If the tempera-
ture gradient and density profile of the fluid are known,
then a calculation by Hart [11] or Thangam, Zebib, and
Chen [12] enables us to predict the velocity field, for the
simple geometry of a rectangular slot of finite horizontal
width in one direction but infinite height. It is assumed
that the vertical concentration gradient has some con-
stant known value, which represents the gradient due to
barodiffusion, and it is assumed that the sample is broad
enough in the horizontal direction perpendicular to the
temperature gradient to be considered infinite. Under
these assumptions Hart and Thangam, Zebib, and Chen
solved the linearized Navier-Stokes equations.

We have extended Hart’s work [13] by introducing a
finite vertical distance scale to the flow. The vertical con-
centration gradient is still assumed to be constant in
space and time. For a more detailed discussion of the
fluid dynamics see the Appendix. For our purposes a
crucial result from both Hart’s and our treatments is that
vertical density gradients can greatly reduce the convec-
tive velocity. The vertical velocities calculated for
different density gradients in a particular system as a
function of horizontal position demonstrate this in Fig. 1.

In our calculations of the velocity we assumed that it
could be described by a stream function written as a
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product of a function of the horizontal position times a
cosine of the vertical position. There are a number of
studies of numerical solutions of the case of two com-
ponent fluids heated from the side contained in rectangu-
lar slots of finite height [14,15] but the reports do not give
the complete velocity field for the low-temperature gra-
dient, almost stagnant fluids that are needed for our cal-
culations. These studies do suggest that there would be
convection cells confined to the top and bottom of the
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FIG. 1. The vertical velocity as a function of horizontal posi-
tion for a box with width twice its height filled with aniline plus
cyclohexane heated from the side. The average temperature of
the cell is 0.54 K above the critical phase transition tempera-
ture. The sample was prepared at the critical concentration.
The hot wall is at x =—0.5, the cold wall is at x =+0.5. The
velocity was calculated at the horizontal midplane (z =0) of the
container. The dashed curve in (a) is the velocity of a liquid
with a vertical density gradient equal to 1X 10~ g/cm*; this
gradient can be considered to represent the small limit. The
solid curve in (a) is ten times the velocity of a fluid with
Vp=4.9X 1078 This gradient is the mechanical settling, as de-
scribed in the text. The solid curve in (b) is the velocity of a
fluid with Vp=1.3X10"%; this represents the barodiffusion gra-
dient. Note that in case (b) the velocity is only significantly near
the walls and the axes have been truncated and magnified ac-
cordingly.
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container, and that the magnitude of the velocity would
be small in the middle of the container. Since we are pri-
marily concerned with the vertical distribution of concen-
tration within the container, we focus our attention on
the large central region of the flow. Here we present an
analytic result which can be easily calculated for any
small temperature or density gradient one might need to
consider.

Once the velocity has been established, its significance
can be found by comparing the magnitude of fluid flow to
diffusion. The criterion that we would suggest to
discriminate between diffusion-dominated systems and
convection-dominated systems is to compare the time for
a molecule to diffuse the vertical height of the sample
with the time needed for convection to carry a molecule
the same distance (following Ref. [2]). One would then
expect that if the convection time were shorter than the
diffusion time, the system would evolve into a flowing
steady state that would be far from equilibrium, while if
the temperature gradient were small and the convection
time long, diffusion would dominate, until thermal equi-
librium is effectively attained.

IV. CONSTRUCTION OF THE GENERAL
TRANSPORT MECHANISM REGIME DIAGRAM

Thus we will produce a regime diagram showing the
space of initial conditions for an experiment and indicat-
ing the relative time for convection and diffusion for each
point. An experiment that begins well in the diffusion re-
gime should equilibrate while both diffusion and convec-
tion will need to be considered for experiments near the
boundary. Experiments far in the convection regime
would be dominated by flow effects. In order to apply
our criterion it is a straightforward matter to substitute
into Eq. (3) and its supporting Egs. (4)—(13). It is unfor-
tunate that the resultant diagram is particular to any
given experiment. Then measurements need to be made
on the temperature bath and the mechanical compressi-
bility of the liquid found in order to determine the initial
conditions of interest for each experiment.

The time for convection to carry a molecule across the
sample is the height of the sample divided by the flow ve-
locity. Since the flow velocity varies with position within
the cell, this does not give a single time. Consequently
we will either integrate over space to obtain a velocity
representative of the entire flow or we will consider the
sample to be divided into smaller regions throughout
which we can treat the velocity as constant. We would
then determine the behavior of representative regions of
the flow. We will call either of these velocities V,,, the
measure of the velocity. Since we are primarily con-
cerned that each small fluid element have a constant
height so that it can come to the equilibrium concentra-
tion in response to barodiffusion, we want a measure of
the flow that gives the total circulation. We integrate
over the horizontal direction the absolute value of the ve-
locity at the midplane, where the flow is vertical, to get a
simple measure of this.

The time 7 for a molecule to diffuse a distance L is tak-
en to be given by
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L 2

T w*D

where D is the mutual diffusion constant which goes to

zero near the critical phase transition point [16]. The 7?

comes from the solution of the diffusion equation under

the assumption that the species concentration varies only
in the vertical direction.

Using our extension of the theory of Hart for the veloc-
ity as a function of temperature gradient and vertical
density gradient, we took the convection time to be the
vertical height of the sample cell divided by either the
horizontal integral of the absolute value of the velocity at
the midplane of the container or the velocity of the fluid
at a particular point x,,z,. Setting this equal to the
diffusion time above and then solving for the correspond-
ing temperature gradient we find

m2v(e)D (€)

) 2)

IT=——""y—, (3)
gale)LX V,,
where
172
V=] lw(x,0)ldx @)
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Vy=w(xg,2zq) (5)

and from the Appendix we have

w(x,z)=[E,y sinh(yx)+ E;cosh(ux )sin(Ax )

+ E,sinh(ux )cos(Ax }]cos(yz) (6)
with
2E,
E, =
'™ psin(A)+ A sinh(u)
X [ (%4 A2)cosh(y /2)sinh(u /2 )cos(A /2)
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o
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Here X is the horizontal size of the sample cell, x is the
horizontal coordinate expressed in units of X, the cell
walls have x ==+, 2 is the vertical direction, L is the
vertical height of the sample in units of X, with z =0 at
the middle, V,, is a measure of the velocity, w (x,z) is the
scaled vertical component of the velocity (to get the actu-
al velocity multiply this by gaX?AT /v), v is the kine-
matic viscosity, « is the thermal expansivity, D is the mu-
tual diffusion constant, T, is the critical phase transition
temperature, € is the reduced temperature identically
equal to |T —T,|/T,, g is the gravitational acceleration,
C is the mass concentration of the denser species (aniline,
in this paper), B=(1/p)(3p/3dC) is the coefficient of
volumetric expansion, and AT is the horizontal tempera-
ture difference across the cell. We can convert the con-
centration gradient to a mass density gradient as follows:
Vp=ApVC, where we assert that dp/dC = Ap, the mass
density difference between the two pure liquids, i.e., there
is no significant volume change upon mixing.

V. DRAWING THE PARTICULAR TRANSPORT
MECHANISM REGIME DIAGRAM

Evaluating Eq. (3) for the aniline-plus-cyclohexane sys-
tem gives the horizontal temperature gradient for which
the diffusion time would equal the convection time as a
function of the vertical mass density gradient present in
the sample. This is shown in Fig. 2. All curves were cal-
culated with z =0 where the velocity is the strongest.
Note that the smooth curves represented with solid or
dashed lines are based on the convection time calculated
from the horizontal spatial integral of the absolute value
of the velocity [V, is given by Eq. (4)]. The dash-dotted
curves are calculated using the velocity at the horizontal
position indicated for each curve. For these curves V,, is
given by Eq. (5). Recall that x =0.5 is the position of a
wall and x =0 is the center of the cell. The spikes on
these curves reflect the existence of zeros in the velocity
function. The position of the zeros in space varies with
the vertical density gradient.

The calculation was done for a system with an average
temperature 0.54 K above the critical phase-transition
temperature, but other temperatures also used by
Maisano, Migliardo, and Wanderligh (0.19 and 0.07 K
above T,) give curves with very similar behavior in the
regime where VT increases with Vp, which is the most
relevant one here.

We used data on the kinematic viscosity of aniline plus
cyclohexane taken by Arcovito et al. [17]. Data giving
the thermal expansivity at temperatures near the critical
point could not be found, so that we estimated the possi-
ble range of singular behaviors of the thermal expansivity
of the mixture by investigating literature descriptions of
the thermal expansivity for a few binary liquids [18—-20]
and then scaled them so that the nonsingular part was the
same magnitude as the nonsingular expansivity of aniline
plus cyclohexane, which we took to be the average of the
thermal expansivities of pure aniline and cyclohexane
weighted by the mole fractions at the critical composition
[21].

As indicated before, these curves are particular to the
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FIG. 2. Predicted transport mechanism regime diagram for a
binary liquid mixture of aniline plus cyclohexane heated from
the side. The sample cell is 1 cm tall and 2 cm wide. The tem-
perature is 0.54 K above the critical mixing temperature and the
concentration is critical [6]. The solid curve is the predicted re-
gime boundary based on the horizontal spatial integral of the
absolute value of the velocity; the dashed curves on either side
represent the uncertainty. Equal fractional uncertainties also
apply to the dash-dotted curves. These dash-dotted curves are
the regime boundary for fluid at the horizontal positions indi-
cated. Here x =0 is the center of the cell and x =0.5 is a wall.
The vertical lines show the significant vertical density gradients
that might be present in the cell: the left one mechanical settling
of a fluid with homogeneous species distribution and the right
one equilibrium barodiffusion. The horizontal line is the upper
bound on the temperature gradient provided by the temperature
bath used by Maisano, Migliardo, and Wanderligh [6].

cell geometry and fluid properties used by Maisano, Mi-
gliardo, and Wanderligh, and different systems would be
expected to have different curves. To examine a different
experiment one would need to evaluate the set of Egs.
(3)—(13) using the parameters of that system.

The uncertainty of our result has several sources: the
non-self-consistency of the fluid dynamics due to the
neglect of the precise effect of the flow on the concentra-
tion gradient, our ignorance of the behavior of the
thermal expansion coefficient of the aniline-plus-
cyclohexane mixture near the critical transition point, the
errors introduced in our fluid dynamics when we consider
only the first term of the Fourier expansion of the tem-
perature and when we place a free-slip boundary at the
top and bottom of the fluid, and the error introduced by
our choice of technique to spatially average the flow. The
magnitude of the thermal expansivity error can be rough-
ly determined by examining the range of critical
behaviors exhibited by other binary liquid systems. The
magnitude of the other errors is more difficult to establish
without better treatments of the fluid dynamics. Since we
do not know how large these errors should be, we will not
attempt to include them in Fig. 2. Thus the errors indi-
cated by the dashed curves about the spatial average
(solid) curve includes only the error in thermal expansion,
even though other errors may be more important. To
further simplify the figure, the thermal expansion errors

are not shown for the curves calculated for particular po-
sitions.

VI. FINDING THE INITIAL CONDITIONS

Once the transport mechanism regime diagram has
been found we need to establish the starting position of
the experiment in question on that plane. To do this we
need the horizontal temperature gradient produced by
the imperfections in the temperature-regulating system
and the vertical density gradient present at the beginning
of the experiment.

These will depend on both the history and environment
of the cell. Maisano, Migliardo, and Wanderligh placed a
rectangular sample 4 cm wide X2 cm deep X1 cm tall in a
temperature bath with temperature gradients less than
0.5 mK/cm and stirred the sample. After the stirring
was stopped, a vertical density gradient was observed to
form slowly. Thus we take the initial conditions for the
experiment to be VI'=5X10~* K/cm and VC=0. Fi-
nally, Vp needs to be established.

Placing the initial position on the temperature axis is
relatively straight forward. The horizontal line on Fig. 2
gives the upper bound cited by Maisano, Migliardo, and
Wanderligh of the temperature gradient present in the
cell. The intersection of this line with any curve locates
the boundary between the diffusion dominated regime (to
the right) and the convection regime (to the left) for the
fluid described by that curve.

Now we wish to consider the initial conditions regard-
ing vertical density gradients. Even though the initial VC
is zero we do not expect that Vp would be exactly zero.
This is because the extra pressure on the lower regions of
the liquid due to the weight of overlying liquid will
(slightly) compress the lower liquid. This gradient is
given by

2
—P8
B (14)

9
dz

0

Here B is the bulk modulus =p(dp /8p). To derive Eq.
(14), we replace dp /3p by Vp /(8p/9z) where Vp is the
gravitational pressure gradient. Using the adiabatic
compressibility in place of the isothermal compressibility,
we extract a value for B from the measured speed of
sound in aniline plus cyclohexane [22].

Because we have been treating the liquid as incompres-
sible, we have been able to take the density to depend on
the concentration and temperature alone. To account for
the density variation due to mechanical settling we will
insert the small but nonzero compressibility of the real
liquid into our treatment of an incompressible liquid by
the ad hoc assumption that we can replace the actual con-
centration as a function of position C(r) with an effective
concentration C(r), which would give the model liquid,
at a minimum, the same vertical density gradient
[(8p/dz)y] that the real, well-mixed compressible liquid
would have, as follows:

Sp
_ az 0
VC—VC+T .

(15)
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We do this because the mechanical compression of the
liquid would produce a density gradient that would be
important in stabilizing the system against convection,
but since the flow velocities considered here are much
less than the speed of sound in the media the compressi-
bility will not be important to the rest of the fluid dynam-
ics. Note that except at the beginning of the experiment
when the liquid has just been well mixed the concentra-
tion contribution to the density gradient will be much
larger than the mechanical gradient so that C=C.

Then the vertical line on the left-hand side of Fig. 2 is
the density gradient due to mechanical settling of the
slightly compressible liquid if the species concentration
were uniform. The initial position of Maisano, Migliar-
do, and Wanderligh’s experiment in this space is thus the
intersection of the horizontal and leftmost vertical lines.
This appears to be in the boundary between the diffusion
and convection dominated regimes; however, we know
from the final result of the experiment that diffusion es-
tablished the expected equilibrium barodiffusion gradient
in the system.

The rightmost vertical line locates the calculated verti-
cal density gradient due to equilibrium species
barodiffusion (it is actually the sum of the mechanical set-
tling and barodiffusion terms, but since barodiffusion is so
significant in this system, the mechanical settling can be
neglected; this might not be true for other samples). This
value is found by setting the Eq. (1) [3] equal to zero
(since this is an equilibrium calculation). Doing so for
the vertical direction, in which we will take the tempera-
ture gradient to be zero, we find

VC=—(k,/p)Vp . (16)

The pressure gradient is pg because the sample is in the
Earth’s gravitational field. Thus we find that Vp=ApVC
should be 1.3X 10 * g/cm*, in agreement with Maisano,
Migliardo, and Wanderligh’s interferometrically mea-
sured value of 1.2X10™* g/cm*. This agreement is a
strong indication of thermal equilibrium.

VII. INTERPRETATION

In summary, we expect that immediately after stirring
Maisano, Migliardo, and Wanderligh’s experiment would
reach a regime where both convection and diffusion are
important. We experimentally know, but our criterion
does not predict or counterindicate, that diffusion dom-
inates the system, at least at long times.

We regard this analysis of the Maisano-Migliardo-
Wanderligh experiment as weak confirmation of the
diffusion-time—convection-time comparison as a test of
the importance of the perturbation caused by dc horizon-
tal temperature gradients. If a substantial majority of the
fluid had clearly been in the diffusion regime, we would
have stronger support. We take comfort from the fact
that we are using the “worst case” temperature gradient.

Another report of the observation of gravitational
species barodiffusion in the aniline and cyclohexane sys-
tem comes from Giglio and Vendramini [5]. Because
they used a shorter sample (1.1 mm tall X 15 mm wide)
the criteria developed above suggest that diffusion should

have dominated convection so long as the horizontal tem-
perature gradient was less than 0.05 K/cm. Giglio and
Vendramini did not report their estimate of the tempera-
ture gradient in their paper, except to say that the sample
cell was a large aluminum block intended to minimize
thermal gradients. Since their experiment will tolerate a
larger gradient than Maisano, Migliardo, and
Wanderligh’s, it is likely that our criteria would predict
diffusion domination, as was observed.

VIII. SPECULATIONS ON TIME-FLUCTUATING
TEMPERATURE GRADIENTS

Going beyond the case with only dc temperature gra-
dients, we consider a conceivable mechanism to move to-
ward equilibrium even from inside the convection regime.
This is brought about by the fluctuating convection that
would be produced by intermediate-frequency regime
temperature gradients. These gradients would effectively
randomly rearrange the liquid from time to time. If it
happened that one of these fluctuations enhanced the sta-
bilizing vertical density gradient, then all future convec-
tion would be damped and thus less able to stir the fluid.
Thus if the system takes a step ‘“forward” (toward
thermal equilibrium), any later step “backward” would
be smaller; it is possible that the system might stumble
across the border into the diffusion regime. In order to
test this idea it would be convenient to find a system with
the crossover to diffusion domination at larger, more
readily measured, temperature and density gradients.

We note that Maisano, Migliardo, and Wanderligh
mention that the gradients due to barodiffusion formed
faster than diffusion would produce them. Giglio and
Vendramini’s sample evolved with the expected diffusion
time scalee. We can add our speculations about
intermediate-frequency-regime temperature fluctuations
to the possible explanations for this extra speed men-
tioned in Maisano, Migliardo, and Wanderligh’s work.

IX. CONCLUSIONS

We have suggested a rough guideline that predicts
whether a binary liquid system is likely to evolve toward
equilibrium in spite of the convection due to horizontal
temperature gradients to which it is subjected. This cal-
culation indicates that temperature gradients that might
intuitively seem negligibly small need not be so. Finally
our criterion passes a rough comparison with experiment.

We suggest that experimentalists interested in achiev-
ing thermal equilibrium as part of other work can look
for barodiffusion as a test. Some useful future theoretical
work has been proposed. This would include numerical
solutions of the Navier-Stokes equations in finite rec-
tangular geometries with velocities reported for very
small horizontal temperature gradients. Ideally these
could include time-varying temperature gradients as well
as constant ones, fixed or free interfaces at the top of the
liquid, and a more complete treatment of diffusion, in-
cluding barodiffusion in a self-consistent manner and the
Soret effect. This would provide more accurate velocity-
field data than is currently available. This might lead to
substantial improvement in the criteria suggested by this
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paper. Finally, it would be very interesting to observe
barodiffusion in the presence of thermal gradients to test
the regime diagram shown in Fig. 2 experimentally.
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APPENDIX:
CALCULATION OF THE VELOCITY FIELD

We now present our calculation of the flow in a two-
dimensional container of height L and width X contain-
ing a two-component liquid subjected to a horizontal
temperature gradient. The liquid responds to tempera-
ture changes only by thermal expansion, so that the Soret
effect is neglected and the Boussinesq approximation has
been made. The liquid is assumed to have some constant
vertical concentration gradient, with lower densities at
the top. Conceptually we consider the infinitely tall slot
divided into regions or cells of height L, with tempera-
ture difference AT between the two sidewalls [13]. The
coordinate system, symbols, and scalings are given fol-
lowing Eq. (13). We consider the case where the signs of
the temperature difference alternate from a cell to the one
above it [13]. We write this temperature as a Fourier
series and then for convenience throw out all but the first
term [13]. The temperature on the sidewalls is then given
by £(2/7)AT cos(yz). This is different than the condi-
tion that Hart used [T (x ==%1)=®1AT]. Since we have
no reason to expect that the horizontal temperature gra-
dients accidentally applied to a container would have any
particular character, we do not consider it necessary to
require that the temperature be uniform on the sidewalls.

We consider one of these cells as the system under
study. Therefore, we require that there be no flow be-
tween cells. The temperature at the top and bottom is
left free. No molecules are allowed to pass through any
wall, so the normal velocity at each side is zero. The
tangential velocity goes to zero at the sidewalls (no slip);
however, it is more convenient to require that the shear
vanish at the top and bottom of the cell (the derivative
with respect to the vertical direction of the horizontal ve-
locity is zero ) [13].

Taking the incompressible Navier-Stokes equation
from Hart

Ra Du _ 2 ~

P Dt Vp+Vau+(T—-C)z, (A1)
DT _

R, 7 -=V'T, (A2)

H H%H{S-usz , (A3)

V-u=0. (A4)

Here Df /Dt =3f /0t +u-Vf, where f is any function,
R, is the Rayleigh number gaATX3/kv, P, is the
Prandtl number k;/v, H is the Schmidt number «/D,
R, is similar to R from Eq. (13) except that (3C /9z) is
replaced with VC, k, is the thermal diffusivity (the
diffusion constant for heat), and u is the velocity vector
(w is its vertical component). Because we are interested
in the long-time behavior of the system we assume that
the flow reaches a steady state so that df /3t =0. Also
because we are considering the small driving force limit
we will consider all the u-Vf terms to be second order
and thus negligible, except for dC /dz, which is nonzero
as a boundary condition. We neglect u-VT even though
VT is also nonzero as a boundary condition because the
diffusion of heat is much faster than the diffusion of
species, and we are looking for the regime where species
convection is of the same speed as species diffusion, and
therefore where heat diffusion will still be faster than heat
advection.

We then express the velocity as derivatives of a stream
function ¥(x,z), such that w =u, =0V /dx (notation ¥,)
and u, = —¥,. We take the curl of the Eq. (A1), express-
ing the results in terms of ¥ (remembering that C, and
hence R; are fixed):

Vox T2V, tY,,,, +T,—C,=0. (AS5)

Equations (A2) and (A3) become
T, +T,=0, (A6)
RV, =C,, . (A7)
By integration of Eq. (A7) we get
RY=C, , (A8)

where we have used the boundary conditions [the condi-
tions are that no diffusion takes place through the
sidewalls and that both the normal and tangential ve-
locities are zero at the sidewalls; these are
W(x =%1,2)=V¥,(x =*1,2)=C,(x =%1,z)=0] to de-
termine that the constant of integration is zero. Substitu-
tion for C, into Eq. (AS) leaves us with an equation for ¥
with unknowns 7 and ¥ only. We then assume that
¥(x,z) has the form F(x)cos(yz) and T (x,z)
=G(x)cos(yz). The form of ¥ is designed to prevent
flow between cells and to observe the free-slip boundary
condition at the top and bottom of the cell [13], i.e.,
w =0 and du, /0z=0 at z==xL /(2X). This form for ¥
also anticipates the z dependence of the thermal driving
term in Eq. (A5).

The Eq. (A6) yields G (x)=[2sinh(yx)]/[wsinh(y /
2)], which satisfies the thermal boundary conditions on
the sidewalls. This results in the following inhomogene-
ous differential equation:

—29?F, +(y*—R,F + 2L Coshlyx) 4 (4

F
7 sinh(y /2)

XXXX

A particular solution is

F,(x)=E,cosh(yx) ,

g (A10)

where
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E,=2y/[mRsinh(y /2)] . (A11)

We look for a flow field which circulates about the
middle of the cell. Thus we want a vertical velocity that
is  antisymmetric in  x. This means that
F (x)=—F,(—x) or F(x)=F(—x). The particular
solution has this symmetry.

While the most general solutions to the corresponding
homogeneous differential equation are four exponential
functions of x with complex wave vectors, this symmetry
requirement makes it is more convenient to express them
as

F)(x)=a,cosh(ux )cos(Ax)+a,sinh(pux )sin(Ax) .
(A12)

Here p and A are as defined in Egs. (9) and (10), and we
have used the symmetry requirement to eliminate two of
the four solutions. Then a, and a, are chosen so that the
total solution (the sum of F, and F},) meets the boundary

P
conditions at the sidewalls. This gives
2E,

@1 sin(A)+ A sinh(p)
X {y sin(A/2)sinh(y /2)sinh(u /2)
—cosh(y /2)[u cosh(u /2)sin(A /2)

+Acos(A/2)sinh(/2)]} , (A13)
2E,
a,= . n
psin(A)+A sinh(p)
X { —7 cos(A/2)cosh(u /2)sinh(y /2)
+cosh(y /2)[u cos(A/2)sinh(u /2)
—Acosh(u/2)sin(A/2)]} . (A14)

Then the appropriate derivatives of W(x,z) are taken to

find the velocity [Eq. (6)] of the flow. If we let the height
of the sample go to infinity [and adjust for our use of a
temperature difference of (4/7)AT instead of AT] we re-
cover the velocity expressed by Thangam, Zebib, and
Chen and negative one times the velocity printed in Hart.
Since it is clear that a liquid that becomes less dense at
higher temperatures should rise near the hot wall (Hart’s
figures agree on this point), we believe that there is a
printing error in Hart’s article.

We will now briefly describe the nature of the flow we
have calculated, emphasizing its dependence on sample
height. Tall flows with relatively small vertical density
gradients (10”8 g/cm*, for example) behave like Hart or
Thangam-Zebib-Chen flows at the midplane of the cell.
The vertical velocity decreases smoothly as one ap-
proaches the top and bottom of the container. As we
move to shorter samples, the velocity slowly decreases
until the sample cell is as tall as it is wide at which point
the velocity has gone down by a factor of about 2. There-
after the velocity falls rapidly. It is down by a factor of
25 when the height is one-tenth the width. As the sample
is made shorter, the vertical density gradients are less
effective at damping the flow, and again this becomes
much more pronounced for samples whose height is less
than their width. For systems with very large vertical
gradients (10~ g/cm?, for example), the velocity actually
increases with decreasing height of the container. The
velocity rises by a factor of 2 as the sample goes from tall
to being of unit height and rises by a further factor of 4 as
the height becomes one-tenth the width. In addition to
changes in the magnitude the character of the flow also
changes. In order for mass to be conserved, an upward
or downward flow must have a return flow. For con-
tainers with widths less than their heights, the flow at the
cold wall serves as the return for the flow at the hot wall
while for wide containers the flows at the walls are each
recirculated by a separate return flow next to the wall
flow on the interior side.
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